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March 31, 1993

Dr. Edwin P. Rood
Scientific Officer Code: 1132F
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Dear Dr. Rood:

The purpose of this letter is to transmit the ninth quarterly report for ONR Grant
N00014-91-J-1271, "An Experimental Study of a Plunging Liquid Jet Induced Air
Carryunder and Dispersion" (Lahey & Drew - Co-PI).

During this report period a technical paper entitled, "A Numerical Simulation of
Two-Phase Jet Spreading Using an Eulerian-Lagrangian Technique," was
accepted for presentation and publication at the 1993 Winter Annual Meeting of
the ASME. A draft of this paper was previously transmitted to you by the eighth
quarterly report and it has only needed to be slightly modified to resolve reviewer
comments.

This report period was primarily concerned with performing mechanistic CFD
predictions of a spreading two-phase jet using a multidimensional two-fluid
model, and the comparison of these predictions with the data we have previously

SIrc ig acquired. The attached paper, entitled, "A Numerical Simulation of a Turbulent
Two-Phase Jet Using a Multidimensional Two-Fluid Model" has been prepared
for submission to the Int. J. Numerical Methods in Fluids. As you can see the
two-fluid model predictions agree fairly well with the data, however some trends! have not yet been fully predicted. Moreover, more work is still required to properly
model the air capture and spreading phenomenon as the liquid jet enters the pool.
Nevertheless, these results are quite exciting since they show that mechanistic
predictions of two-phase flow phenomena in free jets are indeed possible.

i : i Finally, as I have previously reported to you, in early March I met with Professors
Lasheras (UC-SD) and Loth (U. Illinois) in Pasadena to discuss research
collaboration. In addition, I visited Professor Lasheras' laboratory in San Diego.

L It appears that research collaboration would be mutually beneficial and Professor
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Drew and I plan to formally establish synergistic research collaboration in a
future extension of this research project.

If you need any further information concerning this report please don't hesitate to
contact me ((518) 276-8579] or Professor Drew [(518) 276-6903].

Sincerely yours,

Dr. R.T. Lahey, Jr.
The Edward E. Hood, Jr. Professor of Engineering
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cc: Administrative Grants Officer
Director, Naval Research Laboratory
Defense Technical Information Center '/
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DRAFT

A NUMERICAL SIMULATION OF A TURBULENT TWO-PHASE
JET USING A MULTIDIMENSIONAL TWO-FLUID MODEL

F. Bonetto, D.A. Drew, R.T. Lahey, Jr.
Center for Multiphase Research
Rensselaer Polytechnic Institute a -* N=f

Troy, NY 12180-3590 USA CMR

INTRODUCTON

A good understanding of the air carryunder and bubble dispersion process

associated with a plunging liquid jet is vital if one is to be able to quantify such

diverse phenomena as sea surface chemistry, the meteorological significance of

breaking ocean waves (eg, mitigation of the "greenhouse" effect due to the

absorption of CO 2 by the oceans), the performance of certain type of chemical

reactors, and a number of other important maritime-related applications.

The absorption of greenhouse gases into the ocean has been hypothesized to

be highly dependent upon the air carryunder that occurs due to breaking waves.

This process can be approximated with a plunging liquid jet [Monahan, 1991;

Kerman, 19841. Moreover, the air entrainment process due to the breaking bow

waves of surface ships may cause long (ie, up to 5 km in length) wakes.

Naturally, easily detectable wakes are undesirable for naval warships. In

addition, the air carryunder that occurs at most hydraulic structures in rivers is

primarily responsible for the large air/water mass transfer that is associated with

these structures (Avery and Novak, 1978]. Also, air entrainment plays an

important role in the slug flow regime. In particular, the liquid film

surrounding a Taylor bubble has a flow in the opposite direction from the Taylor

bubble. This liquid film can be thought of as a plunging liquid jet that produces a

surface depression in the rear part of the Taylor bubble. When the annular liquid
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jet exceeds a critical velocity, it entrains small bubbles from the air in the Taylor

bubble. These entrained bubbles follow the Taylor bubbles in the liquid slug.

Single-phase turbulent jets represent an important class of free shear flows

that have been studied in the past to develop and test turbulence models

[Abramovich, 1963]. More recently, turbulent jets have been evaluated

numerically using computational fluid dynamic (CFD) techniques for various

turbulence models. Rodi [1984] presented results using the classical k-c model of

Gibson & Launder [1976], and showed that k-c models may not accurately predict

jet spreading. Rodi [1984] proposed that the constant C. in the model for turbulent

viscosity was really a function of the ratio between turbulent production and

dissipation. This involved the development of a new function which produced

better results. Sini and Dekeyser [1987] solved the single-phase turbulent jet using

Rodi's k-c model [Rodi, 1984]. This model compared favorably with the

experimental results of the single-phase turbulent jet as well as with other more

detailed algebraic stress models. Hence it appears that in some cases turbulent

nonisotropy is not important and need not be modeled.

Significantly, it has been found that single-phase turbulent jet data can be

used for the assessment of turbulence models because one does not have to

constitute complicated turbulent closure laws near solid (no slip) boundaries.

Indeed, due to the absence of walls and the associated shear boundary conditions

the turbulent jet is probably the simplest non-trivial case to analyze.

Interestingly, the same conclusions can be reached for a two-phase turbulent jet.

In most of the previously mentioned research, the flow field was considered

to be thin in the lateral direction and the flows are characterized by a relatively

small lateral velocity when compared to the streamwise velocity. This is

equivalent to considering the flow (ie, the liquid jet) to be a boundary layer. Hence,
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the flow is often assumed to have a negligible pressure gradient in the lateral

direction, and the pressure in the boundary layer can be imposed by the external

flow. From the mathematical point of view, this approximation changes the

problem from an elliptic to parabolic one in the streamwise direction. From the

computational point of view, when using a boundary layer approximation the

pressure distribution has to be prescribed. That is, the static pressure as a

function of the streamwise coordinate has to be known and supplied to the

computational fluid dynamic (CFD) code.

Depending on the variables of interest, approximating the jet as a boundary

layer may be a reasonable approximation. However, the lateral velocity at the

edge of the jet (i.e., the entrainment velocity) may be much larger than the

streamwise velocity. Moreover, for a planar jet the entrainment velocity remains

finite as the integration domain in the lateral direction is enlarged.

In this work we did not make the boundary layer approximation. Rather,

we assumed an elliptic problem for both the gas and the liquid phases. Solving

the partial differential equations as an elliptic system increases the complexity of

the problem but provides more detailed and accurate information on the flow field

than a parabolic scheme. One of the advantages of the elliptic solution is that the

streamwise pressure distribution does not have to be provided. This has two

effects, first we are able to compute recirculation, and second, we are able to

calculate the buoyancy-induced reversal of the bubbles. These two important

effects cannot be computed using a parabolic approach.

In parabolic single-phase jet calculations using a k-c model, Sini &

Dekeyser [1987], and Hossain & Rodi [1982] found satisfactory agreement between

calculations and experiments, except for a small region near jet inlet. Their good

results are due in part to the fact that they analyzed a free jet which was only
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weakly nonisotropic. The next level of complexity for simulating turbulent two-

phase flows is the use of an Algebraic Stress Model (ASM). Several different

models have been proposed in the literature. For the particular case of a planar

jet, performance of the ASM is similar to the k-E model. One might expect that

the nonisotropic ASM model would produce better results than the isotropic k-C

model for the pressure distribution. However, when the ASM proposed by Gibson

& Launder [1976] was used for the evaluation of a planar jet the computed

streamwise-pressure distribution [Bergstrom, 1992] was virtually the same as

when a k-E model was used.

Thus, for simplicity, we have used a k-c model in the computations

presented in this paper. We note that the turbulence present in the liquid has two

components in a two-phase jet. One component, the shear-induced turbulence, is

due to viscosity and it is present in both single and two-phase flows. The other

component is the bubble-induced turbulence due to slip between the bubbles and

the surrounding liquid, and it only occurs in two-phase flows.

THE TWO-FLUID MODEL

Different phenomenologically-based models for two-phase flows have been

proposed in the past. The drawback of many of these models is that they are only

applicable to particular problems. On the other hand, mechanistically-based

models, commonly known as Two-Fluid Models (TFM), have been proposed [Ishii,

1975; Delhaye, 1968 and Drew & Lahey, 1979].

For an adiabatic plunging liquid jet entraining air bubbles, we have the

following local, instantaneous conservation equations:
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Mass

')Pk S+ V *(Pk Xk) = 0 (k = g,t) (1)

5i (Pk ) + Vo(P vkyk) =V +P (k=gt) (2)

where,

and, Pg, Pt, Yg, y-1, Pg, Pt, ,g, It are the phasic densities, velocities, pressures and

shear stresses of the gas and liquid phases, respectively.

These local, instantaneous conservation equations may be appropriately

averaged to obtain the two-fluid model. Ishii [1975] and Delhaye [1968] have

proposed time and spatial averages. However, the ensemble average [Drew &

Lahey, 1979] seems to be the most fundamental type of averaging. An ensemble

average is defined as,

f(x~) f (_, t;4)P (4)d4 (4)

S

were f is the function we want to average, x is the spatial coordinate, t is time, 4 is

a parameter that determines a particular realization, P(ý) is the probability

density function, and S is the set of all realizations. We note that P(4) satisfies,

J f(x,t;4)d4 = 1.0 (5)

S

Let us define the phase indicator function, Xk(X,t), such that it is unity if phase-k

is present at x and time t, and is zero otherwise.
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Thus, the volume fraction of phase-k, ak, is,

ak = Xk (6)

The physical interpretation of ak is as follows; ak(L't) is the fraction of all

realizations in which phase-k is present at location x at time t.

We refer the reader to Arnold [1988) and Park [1992] for complete details on

the derivation of the two-fluid model. We present here only the final results.

The ensemble-averaged continuity equation for phase-k is:

Mass

atk +V)(ak k+VVk)=0 (k = g or 1) (7)

where,

Pk = --k (8)ak

is the ensemble-averaged phasic density.

In this work we assume that the gas and liquid densities are both constant, thus,

Xk
Pk = Pk Pk (9)

Next, jk, the ensemble-averaged phasic velocity, is given by:

XkPk Yk Xk k (I0)
akPk ak

The ensemble-averaged momentum equation for phase-k is:
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Momentum

(akPkV-k)

+akpk g + Mid (k = g ore) (11)

where, Tk, g, Mki are the averaged stress tensor, the acceleration of gravity and

the total interfacial forces, respectively. They are given by:

-k =xkk (12)Tk =ak

fRe -kk(13)

.k =Pky~kYk

where, v'k is the fluctuation in the velocity of phase-k, and,

Mid =-Tk 0 VXk

The ensemble averaged interfacial jump conditions are:

Interfacial Jump Conditions

=gi Mli+V* a g(2g+(---)~)] (15)

We note that, for monodispersed spherical bubbles, Laplace's equation yields,

Pgi - p /i = 2 a/b (16)

where, a is the surface tension and Rb the mean bubble radius. The bubble's

surface stress tensor, c, is given by [Park, 1992],

- p~s[ r•s-r V+s(-r -Vr)I] (17)
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where, Vr = V g- V1t' is the average relative velocity, and, using inviscid flow

theory, the coefficients is and ;, in Eq. (17) can be analytically computed for

spherical bubbles to be:

9 3
a. 20 - - 2D =(18)

TURBULENCE MODELING

The total Reynolds stress tensor for the continuous liquid phase is given by

superposition as,

Re Re Re
.t --t(BI) + _e(SI) (19)

where, for bubbly two-phase flows the bubble-induced shear stress is given by,

Re
MOM(Bi) = - 2 /3 ABi)Pekt(BI) (20)

The bubble-induced turbulent kinetic energy, ke(BI),is given by Eq. (23a), where for

potential flow around a sphere,

A0 9/10 0 (21)
0 0 12/10)

We note that Re is the shear-induced Reynolds stress which comes from the

classical k-e model [Rodi, 1984]:

D t akI(SI)] = V*[auT Vkj(SI)] + a,(P" - ej) (22a)
DtI

Dtae 1  vO a, T!i vetj + z/PE - CE) (22b)
Dt =r.
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where,

kt(Bi) = 1 2 (23a)

ki = ki(sI) + kj(BI) (23b)

2
T C kt(sI) (23c)=t 0 Ud Et

Pt ='Ut(23d)
Pe = (V-l +it V):Vt(

Pz IPI (23e)
Pe = Cie kI(sI)

Ee = C2e £Ek(SI) (230

Pr, = 1.3 (23g)

and [Rodi, 1984], CI = 0.5478, Cd = 0.1643, Cie 1.44, C2e 1.92 are the single-

phase flow k-e model coefficients.

Using these results, the Reynolds stress tensor is given by:

Re = T [Vit + •,V] (24)

After averaging, we have more unknowns than equations. Thus, we need

to constitute some of the averaged quantities in terms of the state variables, ak, Yk

and 9k. This closure process is necessary because we have lost information due

to averaging and we must reintroduce the essential physics which was lost.

Cell model averaging was successfully applied to a dilute mixture of liquid

and gas bubbles by Arnold [1988] and Park [1992]. As can be seen in Figure-i, we

divide the flow field into "cells", each of which have only one spherical bubble

inside. Using inviscid flow theory we may compute the pressure distribution
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around the bubbles and thus deduce the various interfacial forces. The

assumptions are that both phases are inviscid, incompressible and have constant

thermophysical properties, the bubbles are spherical and can be treated as a

dilute dispersion of spheres, the non-uniformities in the distribution of the

dispersed phase are small and the velocity gradients of both phases are small.

Figure-1 shows a typical cell for one particular realization of the ensemble.

Note that x is the vectoral location under consideration, z. is the position of the

center of the bubble in a particular realization of the ensemble, and = A - z is the

position of the bubble with respect to x, the location under consideration. We need
-Re-

to constitute the following quantities: Tk , -Tk, Mki, Pki in terms of the state

variables.

Using the results of Arnold [1988] and Park [1992] the resultant two-fluid phasic

momentum equations are:

Momentum Conservation - Gas Phase

a (Cgpjg) + V (a gPg~g~g) = - cxgVp,

Gvm ZgP[(-�(+igV g-+it'V) t]

-CrotagPtyr x vg -LPtagyr x V x

-(Ci+C 2 -2 Cp- 2b ) gP - - Vr T + (a. - C2) agPg Vy
PCD "- I - T (25a)

+ (as -C2-p( *£) v + agpgg C - --P A Xr" TD kt g
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Momentum Conservation - Liquid Phase

5i (altY,) + V (alp, pyy 1) =-ajVpI + (Cp + bs + bt) ptl yr12 Vag

+ CrotagPfr x V x xg + CLPtagyr x V x Yt + (C2 + at)agPt Yr (V Y)

-T
"+ (Cl + C2 + 2b1) (XgPt-r Vyr + (C2 + a,) agpi Yr° VYr

-(aCDsAa- pe•rr a)5C)

"+ (a. + a,) Pt (r * Vag) Yr + aP + - Pt A Yr 1 + CTDPtktVag (25b)

where both phases were assumed to be incompressible.

For numerical purposes it is important to rewrite Eq. (25a) as follows. For

the air/water flows under consideration Eq. (7) can be employed to show that the

left hand side of the gas phase momentum equation can be rewritten in

Lagrangian form as:

a Dv
(agpgvg) + V e (agpgVgVg) = Pg g Dt (26)

Grouping the right hand side of Eq. (26) with one part of the virtual mass force in

Eq. (25a) we obtain:

Dv Dv DvD_ K_=(Pg+ Cvt ___ (27)
Pgag Dt + CvmPt g t = ( + VMP ag Dt

Notice that we have kept the other part of the virtual mass force associated with

liquid phase acceleration in the second term on the right hand side of Eq. (25a). It

has been found that writing the gas phase's acceleraticn as in Eq. (27) promotes

numerical convergence.
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Equations (25) were numerically evaluated using the finite difference

formulation of Patankar [19801 in the well-known PHOENICS code. First the

domain of interest (DOI) was subdivided into a Cartesian grid, as shown in Fig. 2.

The dependent variables were calculated and stored at discrete points on the grid.

To prevent pressure "checker boarding" [Patankar, 19801 a staggered grid was

used. The velocities are calculated at the locations, shown by the arrows in Fig. 2

that are between pressure points (P). The cell surrounding point P is often called

the continuity cell. The velocities, Vy and 'z, were computed at the arrow

locations and the pressure and void fraction, P, and ag, were computed at the

continuity cell center (P).

According to the differencing procedure, the conservation equations were

first integrated over the control volume that surrounds the node. The resulting

integrals were then approximated using the nodal values and algebraic difference

equations were obtained, where the discrete equations had an implicit

formulation.

Implementation of the various source terms required special attention. We

have used lagged quantities for them, (i.e., values from the previous iteration).

Even though there are many terms on the right hand side of the conservation

equations, all of them can be written as a function of the following quantities: ag,

V(lg, Yk and Vyk. Notice that a is naturally given at the continuity cell center

and Va g is computed using a first order Taylor series expansion at locations w, e,

s and n (Fig. 2). The velocity component, Vky, was given at locations w,e and Ykz

was given at locations n,s. Finally, Vvk = Vkji was computed using a first order

Taylor series expansion and the locations are P, nw, ne, sw, se depending on the

"velocity components j and the coordinate i. Because these four basic quantities are

naturally given at different locations, we need to perform some kind of averaging
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before computing the source terms. To illustrate this let us take as an example

the lift force in the y-direction. The lateral force is proportional to:

Lifty• cag (V-gy- v1y) az - (y8

were ag is given at the continuity cell center, P (Fig. 3), Vag at w, e, s and n, Vty is

given a w,e, Vlyz is given at nw and Vhzy is given at ne. It is not consistent to

multiply quantities given at different locations. After some experimentation we

obtain acceptable convergence speed and accuracy with the following criteria. All

tensor components with repeated indices (T 11 , T2 2 , ... ) were computed at the

continuity cell center P. Off-diagonal tensor components (T 12 , ... ) were computed

at corresponding continuity cell corners (eg, ne for the case of index 12).

In order to numerically evaluate the two-fluid model we also needed the

appropriate boundary and initial conditions. There is no general theory for the

type of boundary and initial conditions that a system of nonlinear partial

differential equations requires in order to have a unique solution. Many

researchers in the past have evaluated two-phase models as initial value

problems using parabolic numerical techniques, thus it was not necessary to

specify boundary conditions at the outlet of the integration domain. However, as

discussed previously, when this approach is used, one has to specify the pressure

distribution in the integration domain. For many cases a hydrostatic pressure

distribution was a good enough approximation. However, when a parabolic

scheme is used, one cannot compute flow recirculation nor buoyancy-induced gas

reversal, an important feature of the two-phase jets which are of interest in this

study.

As noted previously, in this work we used an elliptic (ie, boundary value)

calculational scheme. That is, we numerically evaluated the full two-fluii model
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and the associated k-e model using appropriate boundary conditions at the inlet

and the exit of the flow domain. This complicated the evaluation procedure,

however only in this way could we obtain an accurate prediction for the gas phase.

Figure-3 shows the integration domain. Note that we have refined the grid

near the symmetry plane of the planar jet because the gradients are the steepest

there. In the axial (i.e., z) direction we have increasingly larger cells because of

the decreasing gradients. The boundary conditions which have been used are:

h hMET, Cz = 0, --2 < y < •

Gas mass flux = a pg V (29a)

Liquid mass flux = (1 - c) p, V (29b)

u = 0 (29c)

ugy = 0 (29d)

utz = V (29e)

u9z = V (290

Kinetic energy k= 3 (U,)2 (29g)

-3
Dissipation =- e CU 14 1.256 /h (29h)

OUTLET (z = Z)

p = PIg Z cos 0 (30a)

•z - 0 iz - 0 (30b)

}Ulz 0 z = 0 (30c)
z =0az
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0 ar (30d)
ak •az

It should be noted that the boundary conditions associated with the mass balances

are only required at the inlet. This can be understood based on the fact that the

mass balance is a first order partial differential equation. Moreover, given the

velocity field, the equation may be solved for the void fraction along the model's

characteristics. With the void fraction given at the inlet, the void fraction field can

be readily evaluated.

Because the velocity fields, as well as the turbulent kinetic energy and the

dissipation, are not well known at the outlet, we specified natural boundary

conditions there. That is, we set the gradients of these variables in the flow

direction equal to zero. Fortunately, in our case, the outlet boundary conditions

were found to have a negligible effect, except for the last two rows of cells.

The numerical results presented herein correspond to a planar liquid jet

impacting a liquid pool using the two-fluid model previously discussed. The

liquid jet velocity at the location of impact was Utz = 5 m/s, and a constant bubble

diameter of 2mm was assumed. The initial velocity profile was uniform. The jet

width, h, was 4.03 mm, and the void fraction at the location of impact was

assumed to be uniform and equal to 5%. The inlet turbulent intensity was 3% and

the inlet dissipation was computed. The inclination angle of the jet was

measured with respect to the vertical plane (i.e. 0 = 0* means a vertical planar

jet). The integration domain had an extent of y = 0.2 m in the lateral direction and

z = 0.25 m in the axial direction. The k-e model for turbulence employed the

constant values suggested by Rodi [1984] for single-phase flow.

We have presented results corresponding to a vertical liquid jet (0 = 00, z =

0.225 m; note, y = 0.1 m is the jet's plane of symmetry). Both velocity profiles show
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a Gaussian-like profile. We see that, due to buoyancy, the liquid velocity is always

higher than the gas velocity, a well-known characteristic of bubbly two-phase

downflows. Moreover, the relative velocity was approximately 0.3 m/s which is

very close to the terminal rise velolcity of the single bubbles.

Figure-5 shows the axial liquid velocity as a function of lateral position for

different axial positions. The curve labeled, z = 0.00125 m, is right under the

location of jet impact and one can see an almost uniform velocity profile (uZ

5 m/s). As we move down in the pool the jet is dispersed due to momentum

interchange with the surrounding fluid. The curve z = 0.225 m is the same one

shown in Figure 4 for liquid velocity.

Figure-6 shows the turbulent kinetic energy, k1, as a function of lateral

position for z = 0.225 m. The curve shows the characteristic relative minimum in

k, at the symmetry plane.

In Figure-7 the liquid velocity field has been plotted as a function of axial

and lateral position. The length of the arrows is proportional to the liquid velocity

at the location of the arrow's tail. The arrow's tail is located at the center of the

computational cell. The arrow scale is in the lower left corner (uzd = 2 m/s). The

spreading of the jet can be easily seen in this plot, as noted previously. Near the

location of jet impact (z = 0) the axial velocity is almost uniform. Because of the

momentum interchange between the jet and the surrounding fluid, liquid is

entrained in the lateral, y, direction. Finally, one may note the formation of two

weak recirculation zones near the y-boundaries for large z.

Figure-8 shows a contour plot of the axial liquid velocity. The lines connect

positions with the same axial velocity (equivelocity lines). The outer curve

corresponds to UZI = 0.25 m/s, and the difference between successive lines is 0.25

m/s.



17

Figure-9 shows a contour plot of the void fraction for one half of the jet. The

outer line connects points with the void fraction a = 0.25%.

Figure-10 shows a vector plot of the liquid velocity field for an inclined

planar jet (9 = 450). We have rotated the integration domain 450 in order to have

the plane y = 0 aligned with the jet orientation. This was done to minimize

numerical diffusion. It can be seen that, as expected, the rising gas drags the

liquid away from the centerplane.

Figure-11 shows a vector plot of the gas velocity field for an inclined planar

jet (9 = 450). Of particular interest are the results shown in the upper right

corner, the gas velocity (weighted by the local void fraction) at the y-boundary

which shows flow reversal of the gas.

COMPARISON WITH EXPERIMENTS

The results presented in the previous section have inlet boundary

conditions that are the simplest to implement for the two-phase jet. The average

axial liquid velocity, VtZ, and the liquid turbulent kinetic energy, ki, were

assumed to be uniform in the liquid jet cross section. These are good

approximations for the experiments we have compared the calculation against

[Bonetto & Lahey, 1993]. However, the assumption of a uniform inlet void fraction

distribution was too crude. We re-evaluated the two-fluid model, but instead of

using the boundary conditions given in Eq. (29), we used the average axial liquid

and gas velocities, V&z and vgz, the liquid turbulent kinetic energy, -v2, and theviz'

gas void faction ag that were actually measured at the inlet of the integration

domain. Figure 12 shows the average axial liquid velocity, viz. The open circles

are the experimental values at the inlet of the domain. The solid curve is the
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computed v1z at the axial position z = 2.5 mm (i.e., at the first velocity node), and

y = 0.1 m corresponds to the planar jet's centerplane.

Figure 13 shows the computed ýiz at z = 31 mm. The open circles are

experimental points. We can see that the agreement is quite good. The spreading

of the jet is well predicted and the underprediction at the center line velocity is

similar to that observed in single-phase flows [Rodi, 1984]. Figure-14 shows the

computed Vtz at z = 59 mm. The open circles are again experimental points, and

the trend is similar to Fig. 13.

Figure-15 shows the gas volume fraction as a function of the lateral

position. The open circles are the experimental values. The solid curve is the

computed ag at the axial position z = 1.25 mm (i.e. at the first gas volume faction

node). Figure 16 and 17 show the gas volume fraction as a function of the lateral

position at distances from the integration domain inlet of z = 31 mm and z = 89

mm, respectively. We can see that the agreement is good. However it can be

noticed that the model tends to overpredict gas dispersion. In Fig. 17 the

experimental peaks are higher than the predicted ones and the experimental

center plane valley is somewhat deeper than predicted.

SUMMARY AND CONCLUSIONS

A state-of-the-art two-fluid model obtained using ensemble averaging has

been derived and was closed using cell average model. This approach provides

equations for multiphase flows that are mechanistically-based (as opposite to

empirical). The rigorous derivation of the cell average model provides exact

constitutive equations for the inviscid limit. One does not expect the values of the

constants from cell model averaging to be correct for very viscous flows but they

provide a good framework to start from. In particular, it is known (Wang et al,
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1987] that the lift coefficient, CL, decreases as liquid viscosity increases. In this

study, a lift force coefficient of CL = .05 has been used instead of the inviscid limit

value of CL = .25. All other parameter values used in this work corresponded to

the inviscid limit values. The agreement with the experiments is remarkable.

The k-e model seems to be adequate for this calculation, however the

observed differences in phasic dispersion indicate some inadequacies in the

turbulence modeling which should be considered in future studies.
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